首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   9篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   34篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   12篇
  2000年   1篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
81.
82.
83.
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities.  相似文献   
84.
Aim This study was conducted to investigate the potential of predicting alpha diversity and turnover rates of a highly diverse herbivorous insect family (Geometridae) based on vascular plant species richness and vegetation structure. Location The study was carried out on the south‐western slopes of Mount Kilimanjaro within a wide range of habitats between 1200 and 3150 m elevation. Methods The floristic and structural composition of the vegetation was recorded at 48 plots of 400 m2. Geometrid moths were sampled manually at light sources located at the plot centres. Principal components analysis, redundancy analysis and multiple linear regression were used to explore how alpha diversity and species turnover of geometrid moths are related to vegetation structure and plant species richness. Results Alpha diversity of geometrid moths was significantly correlated with species diversity patterns in the most common vascular plant families (R2 = 0.49) and with plant structural parameters (R2 = 0.22), but not with overall floristic diversity. Species turnover of geometrid moths was strongly linked to diversity changes in a range of plant families (40% explained variance), less strongly to changes in vegetation physiognomy (25%), and only weakly to overall floristic diversity (5%). Changes in elevation were a better predictor of both alpha diversity and species turnover of geometrid moths than any principal component extracted from the vegetation data. Main conclusions Vegetation composition, diversity and structure all showed significant correlations with the diversity and species composition of geometrid moth assemblages. Nevertheless, in most cases relationships were indirect, via environmental parameters such as temperature and humidity, which influenced both vegetation and moth fauna. Possible direct links between geometrid diversity and potential food plants were much weaker. The lack of a significant correlation between overall plant species richness and geometrid diversity indicates that tropical geometrid moths may not be very selective in their food plant choice. Accordingly, a clear correlation between floral diversity and herbivore species richness must be regarded as overly simplistic, and the diversity of vascular plants cannot universally be used as a suitable biodiversity indicator for diverse insect taxa at higher trophic levels.  相似文献   
85.
Abstract The anaerobic degradation of microcrystalline cellulose by thermostable cellulolytic enzyme complexes from Clostridium thermocellum JW20 (ATCC 31449) was monitored. For quantitative investigations as enzyme-coupled spectrophotometric assay has been developed. The assay allows for the evaluation of the release of cellubiose-/glucose-units from native cellulose. Kinetic studies revealed that the anaerobic breakdown of crystalline cellulose (CC) at 60°C follows Michaelis-Menten kinetics K m CC values have been determined for different aggregation states of the cellulolytic complex. The presented assay seems well suited to screen for CC-degrading enzymes of various sources, and to further explore the mechanism of CC-breakdown.  相似文献   
86.
A 1.6 kb r ep etitive DNA s equence (RPS) from Petunia hybrida was identified that destabilizes expression of a GUS marker transgene. Following polyethylene glycol (PEG)-mediated tobacco and petunia protoplast transformations, GUS expression patterns analysed on callus and plant levels were clearly more variable when constructs contained the RPS sequence. The effect on transgens expression required chromosomal integration since the two different RPS constructs employed did not exhibit reduced levels of GUS activities in transient assays. DNA methylation analysis implies a hypermethylated default state of endogenous RPS copies present in the petunia genome. Analysis of the transgens DNA in different transgenic tobacco plants showed almost complete hypermethylation of a particular Hhal site of the RPS sequence. It is proposed that, due to the presence of specific signals within the RPS region or based on interaction of RPS with other endogenous homologous sequences, RPS functions as an initiation region for de novo methylation and induces expression variegation in adjacent sequences.  相似文献   
87.
Cyanobacterial blooms are becoming increasingly prevalent worldwide. Sparse historic phytoplankton records often result in uncertainty as to whether bloom-forming species have always been present and are proliferating in response to eutrophication or climate change, or if there has been a succession of new arrivals through recent history. This study evaluated the relative efficacies of germination experiments and automated rRNA intergenic spacer analysis (ARISA) assays in identifying cyanobacteria in a sediment core and thus reconstructing the historical composition of cyanobacterial communities. A core (360 mm in depth) was taken in the central, undisturbed basin of Lake Okaro, New Zealand, a lake with a rapid advance of eutrophication and increasing cyanobacteria populations. The core incorporated a tephra from an 1886 volcanic eruption that served to delineate recent sediment deposition. ARISA and germination experiments successfully detected akinete-forming nostocaleans in sediment dating 120 bp and showed little change in Nostocales species structure over this time scale. Species that had not previously been documented in the lake were identified including Aphanizomenon issatschenkoi , a potent anatoxin-a producer. The historic composition of Chrococcales and Oscillatoriales was more difficult to reconstruct, potentially due to the relatively rapid degradation of vegetative cells within sediment.  相似文献   
88.
PCR-based denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments was used to identify the cyanobacterial phylotypes in sediments and plankton of saline–alkaline and freshwater lakes of Kenya. The detection of the aminotransferase domain located on modules mcyE and ndaF using specific molecular markers confirmed the presence of potential toxin-producing cyanobacteria. The eight nucleotide sequences obtained from DGGE bands were placed in three divergent cyanobacterial clusters. Five nucleotide sequences were close to members of the genera Anabaenopsis and Umezakia ( Nostocales ), two sequences fell in the cluster with Arthrospira sp. ( Oscillatoriales ) and one sequence was related to Chroococcidiopsis sp. ( Pleurocapsales ). The presence of the latter taxon was demonstrated de novo in the investigated lakes. All nine attained nucleotide sequences of the aminotransferase region belonged to the mcyE module. Five sequences of the aminotransferase domain were included in the cluster having the nucleotide sequence of Anabaena sp. but showed a separate lineage. Other four aminotransferases were placed in the cluster represented by nucleotide sequence of Microcystis aeruginosa . To our knowledge, this is the first report on molecular detection of cyanobacterial phylotypes in sediments of African lakes and aminotransferase domains for cyanotoxin production from sediment samples in general.  相似文献   
89.
Aim  To test the influence of various species traits, elevation and phylogeographical history on the genetic diversity of high-mountain plants in the Alps and Carpathians.
Location  The regular sampling grid comprised the whole range of the European Alps and the Carpathians.
Methods  Twenty-two high-mountain plant species were exhaustively sampled and their genetic diversity was assessed with amplified fragment length polymorphisms (AFLPs). ANOVAs were used to check for relationships between species traits and species genetic diversity, and to test whether genetic diversity was influenced by altitude and phylogeographical history (i.e. Alps versus Carpathians).
Results  In both mountain systems, species dispersed and pollinated by wind showed higher genetic diversity than species with self or insect pollination, and with animal- or gravity-dispersed seeds. Only in the Alps did altitudinal range size affect species genetic diversity significantly: species with narrow altitudinal ranges in the highest vegetation belts had significantly higher genetic diversity than those expanding over wide altitudinal ranges. Genetic diversity was species specific and significantly higher in the Alps than in the Carpathians, but it was not influenced by elevation.
Main conclusions  Wind pollination and wind dispersal seem to foster high genetic diversity. However, species traits are often associated and their effects on genetic diversity cannot be clearly disentangled. As genetic diversity is species specific, comparisons across species need to be interpreted with care. Genetic diversity was generally lower in the Carpathians than in the Alps, due to higher topographical isolation of alpine habitats in the Carpathians and this mountain massif's divergent phylogeographical history. Elevation did not influence genetic diversity, challenging the long-held view of decreasing genetic diversity with increasing elevation in mountain plants.  相似文献   
90.
In the respiratory chains of aerobic organisms, oxygen reductase members of the heme-copper superfamily couple the reduction of O2 to proton pumping, generating an electrochemical gradient. There are three distinct families of heme-copper oxygen reductases: A, B, and C types. The A- and B-type oxygen reductases have an active-site tyrosine that forms a unique cross-linked histidine-tyrosine cofactor. In the C-type oxygen reductases (also called cbb3 oxidases), an analogous active-site tyrosine has recently been predicted by molecular modeling to be located within a different transmembrane helix in comparison to the A- and B-type oxygen reductases. In this work, Fourier-transform mass spectrometry is used to show that the predicted tyrosine forms a histidine-tyrosine cross-linked cofactor in the active site of the C-type oxygen reductases. This is the first known example of the evolutionary migration of a post-translationally modified active-site residue. It also verifies the presence of a unique cofactor in all three families of proton-pumping respiratory oxidases, demonstrating that these enzymes likely share a common reaction mechanism and that the histidine-tyrosine cofactor may be a required component for proton pumping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号